RAS PhysicsРадиотехника и электроника Journal of Communications Technology and Electronics

  • ISSN (Print) 0033-8494
  • ISSN (Online) 3034-5901

A Method For Autoregression Modeling of a Speech Signal

PII
10.31857/S0033849423020122-1
DOI
10.31857/S0033849423020122
Publication type
Status
Published
Authors
Volume/ Edition
Volume 68 / Issue number 2
Pages
138-145
Abstract
The problem of autoregressive modeling of a speech signal based on the data of the discrete Fourier transform in the mode of a sliding observation window of small duration (milliseconds) is considered. The problem of stability of the formed autoregressive model is investigated. To overcome it, it is proposed to use the envelope of the Schuster periodogram as a reference spectral sample. A new method of autoregressive modeling has been developed, in which the detection of the spectral envelope is carried out using a recirculator of a sequence of samples in the frequency domain. An example of its practical implementation is considered, a full-scale experiment is set up and carried out. Based on the results of the experiment, conclusions were drawn about achieving a significant gain in terms of not only stability, but also the accuracy of the autoregressive model of the speech signal.
Keywords
autoregressive modeling Schuster periodogram recirculator
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
12

References

  1. 1. Gibson J. // Entropy. 2018. V. 20. № 10. P. 7502018. https://doi.org/10.3390/e20100750
  2. 2. Gudnason J. Speech Production Modeling and Analysis. Academic Press Library. In Signal Processing, Elsevier. 2014. V. 4. P. 985. https://doi.org/10.1016/B978-0-12-396501-1.00034-0
  3. 3. Ando Sh. // The J. Acoustical Society of America. 2019. V. 146. P. 2846. https://doi.org/10.1121/1.5136873
  4. 4. Cui S., Li E., Kang X. // IEEE Int. Conf. Multimedia and Expo (ICME). London. 06–10 Jul. 2020. N.Y.: IEEE, 2020. P. 9102765. https://doi.org/10.1109/ICME46284.2020.9102765
  5. 5. Savchenko V.V. // Radioelectronics and Communications Systems. 2021. V. 64. № 11. P. 592. https://doi.org/10.3103/S0735272721110030
  6. 6. Castanié F. Digital Spectral Analysis. Parametric, Non-Parametric and Advanced Methods. Hoboken–London: Wiley-ISTE. 2011. https://doi.org/10.1002/9781118601877
  7. 7. Rabiner L.R., Shafer R.W. Theory and Applications of Digital Speech Processing. Boston: Pearson, 2010.
  8. 8. Marple Jr. S.L. Digital Spectral Analysis with Applications. Mineola, N.Y.: Dover Publications, 2019.
  9. 9. Савченко В.В., Савченко Л.В. // РЭ. 2021. Т. 66. № 11. С. 1100. https://doi.org/10.31857/S0033849421110085
  10. 10. Kazemipour A., Miran S., Pal P. et al. // IEEE Trans. 2017. V. SP-65. № 9. P. 2333. https://doi.org/10.1109/TSP.2017.2656848
  11. 11. Гоноровский И.С. Радиотехнические цепи и сигналы. М.: Сов. радио, 1977.
  12. 12. Mustiere F., Bouchard M., Bolic M. // IEEE Trans. 2012. V. ASLP-20. № 2. P. 705. https://doi.org/10.1109/TASL.2011.2163511
  13. 13. Savchenko A.V., Savchenko V.V. // Radioelectronics and Communications Systems. 2021. V. 64. № 6. P. 300. https://doi.org/10.3103/S0735272721060030
  14. 14. Tohyama M. // Acoustic Signals and Hearing. Acad. Press, 2020. P. 89. https://doi.org/10.1016/B978-0-12-816391-7.00013-9
  15. 15. Савченко А. В., Савченко В. В. // Измерит. техника. 2022. № 6. С. 60. https://doi.org/10.32446/0368-1025it.2022-6-60-66
  16. 16. Palaparthi A., Titze I.R. // Speech Commun. 2020. V. 123. P. 98. https://doi.org/10.1016/j.specom.2020.07.003
  17. 17. Ding J., Tarokh V., Yang Y. // IEEE Trans. 2018. V. IT-64. № 6. P. 4024. https://doi.org/10.1109/TIT.2017.2717599
  18. 18. Min S.Y., Kim Y.K. // J. Korea Academia-industrial Cooperation Society. 2010. № 11. P. 3558. https://doi.org/10.5762/KAIS.2010.11.9.3558
  19. 19. Савченко В.В. // Научные ведомости Белгород. ГУ. Сер. Экономика. Информатика. 2015. № 7. Вып. 34/1. С. 84.
  20. 20. Sharma G., Umapathy K., Krishnan S. // Appl. Acoustics. 2020. V. 158. P. 107020. https://doi.org/10.1016/j.apacoust.2019.107020
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library